Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents

نویسندگان

  • Adrien Moreau
  • Pascal Gosselin-Badaroudine
  • Mohamed Boutjdir
  • Mohamed Chahine
چکیده

Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy

The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Na(v)1.5 mutations (R...

متن کامل

Biophysics, pathophysiology, and pharmacology of ion channel gating pores

Voltage sensor domains (VSDs) are a feature of voltage gated ion channels (VGICs) and voltage sensitive proteins. They are composed of four transmembrane (TM) segments (S1-S4). Currents leaking through VSDs are called omega or gating pore currents. Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the ...

متن کامل

Gating pore currents, a new pathological mechanism underlying cardiac arrhythmias associated with dilated cardiomyopathy

Voltage-gated ion channels (VGIC) are transmembrane proteins responsible for the generation of electrical signals in excitable cells. VGIC were first described in 1952 by Hodgkin and Huxley, (1) and have since been associated with various physiological functions such as propagating nerve impulses, locomotion, and cardiac excitability. VGIC include channels specialized in the selective passage o...

متن کامل

Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and...

متن کامل

Na(+) channel I-II loop mediates parallel genetic and phosphorylation-dependent gating changes.

The cardiac Na channel, NaV1.5, is responsible for inward Na current (INa) that drives the cardiac action potential (AP) upstroke and electrical impulse propagation.2 Genetic variants of the SCN5A gene encoding NaV1.5 are associated with long QT syndrome-3 (LQTs; gain of function), Brugada syndrome (BRs; loss of function), conduction system disease, sudden infant death syndrome, sick sinus synd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015